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The discovery of new phenomena in layered and nanostructured
magnetic devices is driving rapid growth in nanomagnetics
research. Resulting applications such as giant magnetoresistive
field sensors and spin torque devices are fuelling advances in
information and communications technology, magnetoelectronic
sensing and biomedicine1,2. There is an urgent need for high-
resolution magnetic-imaging tools capable of characterizing
these complex, often buried, nanoscale structures. Conventional
ferromagnetic resonance3,4 (FMR) provides quantitative informa-
tion about ferromagnetic materials and interacting multicompo-
nent magnetic structures with spectroscopic precision and can
distinguish components of complex bulk samples through their
distinctive spectroscopic features. However, it lacks the sensitivity
to probe nanoscale volumes and has no imaging capabilities. Here
we demonstrate FMR imaging through spin-wave localization.
Although the strong interactions in a ferromagnet favour the
excitation of extended collective modes, we show that the intense,
spatially confined magnetic field of the micromagnetic probe tip
used in FMR force microscopy can be used to localize the FMR
mode immediately beneath the probe. We demonstrate FMR
modes localized within volumes having 200 nm lateral dimen-
sions, and improvements of the approach may allow these dimen-
sions to be decreased to tens of nanometres. Our study shows
that this approach is capable of providing the microscopic detail
required for the characterization of ferromagnets used in fields
ranging from spintronics to biomagnetism. This method is
applicable to buried and surface magnets, and, being a resonance
technique, measures local internal fields and other magnetic
properties with spectroscopic precision.

Scanning probe FMR, or FMR force microscopy5–7 (FMRFM), is
based on magnetic resonance force microscopy (MRFM)8–10 in which
magnetic resonance is sensitively detected through the magnetic
dipole force exerted on a cantilever by means of a micromagnetic
tip (see Fig. 1a for a schematic diagram). MRFM has demonstrated
the sensitivity necessary to study nanoscale objects5,6,11. In a para-
magnet, the resonance frequency of a spin is a local function of the
applied field. MRFM exploits this (as does magnetic resonance
imaging) to localize the resonant excitation controllably through an
applied magnetic field gradient that establishes a correlation between
position and frequency. This approach is not applicable in a ferro-
magnet, however, because the strong interactions among spins render
the precession frequency at a particular location sensitive to the mag-
netization of the remainder of the sample. Excitations in a ferro-
magnet are thus collective modes3,4, so magnetic resonance imaging
in a ferromagnet requires the localization of these spin-wave modes.

Spin waves can be localized by the strongly inhomogeneous internal
field in patterned ferromagnetic film structures12, and standing spin
waves inside magnetic wells have been discussed theoretically13. A

spin-polarized current injected into a ferromagnetic film generates a
localized spin-wave mode14 beneath the electrode, but these cannot be
scanned for imaging. Confining the excitation of FMR modes within
boundaries defined by a scannable micromagnetic probe field has
been proposed15,16; here we report the observation of localized modes
induced by the micromagnetic probe tip and use them for scanning
probe FMR imaging in ferromagnetic films as schematically indicated
Fig. 1a.

For a sufficiently weak probe field, Hp(r, z), the magnetostatic
mode shape will be negligibly perturbed (see refs 16, 17 for a discus-
sion of the weak-probe-field limit), and the effect of this or any other
spatially varying field on the FMR will be given by the spatial average,
ÆH(r)æ, of the field weighted by the mode it is perturbing:
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Here the asterisk indicates convolution, and mn(r) are the unper-
turbed magnetostatic modes. The dynamic magnetization for these
modes can be written mn(r) 5 m0,nJ0(anr/Rdot), where J0 is a Bessel
function, m0,n is a constant describing the amplitude of the mode, an

is the nth zero of J0 and Rdot is the dot radius18,19. The probe field
experienced by the sample becomes small and the weak-perturbation
limit is applicable when the tip–sample separation, z, significantly
exceeds the ,1-mm tip dimension (Fig. 1a, c).

However, when the probe field exceeds the transverse dipolar field
(,2pMs(t/Rdot)) for a ferromagnetic disk of thickness t and satura-
tion magnetization Ms it will localize modes. Here we consider a
negative probe field that will produce a local field ‘well’. The ana-
logy20 between the linearized Landau–Lifshitz equation for exchange
spin waves and the Schrödinger equation provides useful intuition
and guidance in understanding the mechanism by which an intense
micromagnetic probe field can localize spin waves: the non-uniform
probe magnetic field produces a region of reduced magnetic field
analogous to the potential well that confines particles. Similarly,
the Landau–Lifshitz spin-wave equation has a localized solution as
illustrated in Fig. 1b. In the case of dipole and dipole-exchange spin
waves, the situation considered here, the Landau–Lifshitz equation is
a more complex integro-differential problem requiring micro-
magnetic modelling for accurate solution in many cases. Such
modelling16 finds a localized solution as illustrated in Fig. 1b.

The FMRFM spectra obtained from extended films, shown in Fig. 1c,
demonstrate that magnetostatic modes have been confined by the
localized magnetic field of the high-coercivity (.2 T) SmCo5 probe
tip. These experiments were performed on a continuous permalloy
film of thickness t 5 40 nm in an applied field, H0, perpendicular to
the film plane, antiparallel to the tip moment, mp, and sufficient to
saturate the film. The tip creates a well of magnetic field in the saturated
film as illustrated in Fig. 1b.
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The conventional FMR spectrum of a saturated, continuous fer-
romagnetic film consists of a single resonance peak; in Fig. 1c, this
uniform FMR mode peak occurs at Hres 5 12.41 kG and is labelled
ZFR16 (zero probe field resonance). As the probe approaches the
sample, new discrete resonances appear and shift to higher field
values as the negative probe field increases in strength. These are
similar to the discrete FMR modes observed in patterned films, where
the structure’s dimensions define the wavevectors of the magneto-
static modes19,21,22. However, in an extended, saturated, thin fer-
romagnetic film, these additional discrete FMR modes can only be
due to modes with wavevectors defined by confinement within the
region of intense micromagnetic probe field.

The FMR modes are confined immediately beneath the probe,
where they benefit from the locally reduced field; however, confine-
ment is opposed by the increasing exchange and dipolar energies
associated with the increased wavevector of the confined mode. The
trade-off between these effects is optimized for a particular value of the
radius of the confined mode, Rloc,n. This radius determines the result-
ing shift of the FMR peak from the zero probe field resonance as shown
in Fig. 1c; this shift is indicated schematically in Fig. 1b by the differ-
ence in the vertical positions of the baselines of the FMR modes drawn
in the calculated field well. We calculate Rloc,n using a variational
technique in which Rloc,n is varied until the mode frequency, v, deter-
mined from the dispersion relation of ref. 23 with corrections for non-
uniform fields16,21 (equation (4)), is minimized. For a sufficiently
strong negative probe field (that is, sufficiently small tip–sample sepa-
ration, z) Rloc,n rapidly decreases (Fig. 1e) and the mode localizes.

To calculate Rloc,n, we assume the usual Bessel mode expansion18,19:
mloc,n(r) 5 m0,nJ0(anr/Rloc,n). Here an is the nth zero of the Bessel
function (J0(an) 5 0); micromagnetic simulations16 confirm that
Rloc,n is distinct for each mode. We vary the single free parameter,
Rloc,n, until v is minimized. The spatial variation in the probe field at
each probe–sample separation is taken to be that of a point dipole, the
moment of which is known from cantilever magnetometry (see equa-
tion (44) in ref. 7); a single, fixed value of the location of the point
dipole relative to the surface of the probe magnet is used for all values
of z and n. Once Rloc,n is determined (Fig. 1e), we calculate the
resonance fields for the modes (equation (4)); these are shown as
solid lines in Fig. 1d. The excellent agreement with experimental data
demonstrates the validity of our variational approach.

The demagnetizing field, Hd, of a thin-film ferromagnetic struc-
ture (in our case a disk of radius Rdot 5 2.12 mm and thickness
t 5 40 nm) decreases rapidly near its edge, and this provides a con-
venient test of the ability of the scanned local mode to resolve spatial
variations in the internal field. Figure 2 shows the spatial variation in
the shift of the resonance field for the localized modes generated at
different probe–sample separations. The rightmost four images com-
pare experimental data with theoretical predictions obtained if we
neglect the localization of the magnetostatic modes by the probe
field, calculated using equation (1) (see also equation (5)).

The dispersion relation for small in-plane wavevectors k in the
dot23 (kt= 1) gives the dependence of resonance frequency on
applied field and various parameters (see Methods, equation (4)).
The resonance field, Hres, is the applied field, H0, at which resonance
occurs for the given applied microwave frequency, v:
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v
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Here c is the electronic gyromagnetic ratio, aex~A=2pM2
s and A is

the exchange constant. Hence, in the weak-probe-field limit, decreas-
ing z increases the negative probe field ÆHpæ, which increases the
resonance field as seen in Fig. 2.

As the probe–sample separation becomes small, however, Hp(r)
becomes large enough that this approach fails to describe the experi-
mental data, and it becomes necessary to take mode localization into
account. The leftmost three images in Fig. 2 compare experimental
data with predictions made taking into account the confinement of
the magnetostatic modes to within the radius Rloc,n, obtained by the
variational method described above. The mode is scanned with the
probe tip, and the variation in Hres (equation (2)) is determined by
the spatial average of Hd(r) weighted by the localized mode generated
at the particular probe height, z:
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We observe that the shift of the first localized mode increasingly
accurately images the non-uniform demagnetizing field, Hd(r), in
the dot as z decreases, hence reducing Rloc,n.

Our theoretical estimate for the first-order localized mode (Fig. 2,
solid red line) agrees very closely with the experimental data to the
smallest values of z. However, our simplified analytical model is
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Figure 1 | Observation and characterization of localized FMR modes.
a, FMRFM geometry: the ferromagnetic film is magnetized perpendicular to
its plane by an external magnetic field, H0. The moment, mp, of the
micromagnetic probe is antiparallel to H0 and is separated from the film by a
distance z (the distance from the surface to the centre of the probe magnet).
b, The micromagnetic probe creates a well of magnetic field, shown by the
solid light-blue line, that localizes spin-wave excitations mloc,n(r), indicated
by the solid red and blue lines for the first two modes. The probe field (Hp),

the dynamic field (Hdyn) and the modes are calculated for z 5 1,270 nm.
c, FMRFM spectra of a continuous permalloy film for the indicated values of
z. The vertical dotted line shows the resonance field for the uniform FMR
mode (ZFR). The first and second confined modes are indicated by the
arrows. d, Dependence on z of the resonance fields for the first and second
FMR modes. The solid lines are calculations obtained from the variational
method described in the text. e, Calculated local-mode radius, Rloc,n, versus z
for the first two magnetostatic modes obtained using the variational method.
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limited when FMR modes defined by the probe field reach the dot
edge, where the very rapid spatial variation in the demagnetizing field
significantly distorts the FMR modes. This limitation is visible for
second- and third-order modes. We note, however, that at close
probe approach the resonance field of the first-order localized mode
(red solid line) coincides very closely with the well-known and
straightforwardly calculable demagnetizing field of the dot, shown
by the solid black line in Fig. 2. Thus, the first-order local mode
accurately visualizes the internal fields of the thin ferromagnetic dot.

We can apply localized-mode FMR imaging as a highly sensitive
internal-field sensor that can probe not only demagnetizing fields but
also internal fields such as crystalline/surface anisotropy fields,
exchange fields in buried structures and even stray fields from external
magnetic sources. Figure 3 shows a localized-mode field-position
FMR image of the internal fields in our continuous permalloy film
for z 5 1.32mm. The lateral variation in the resonance fields of the

localized modes (n 5 1, 2), repeatable from measurement to measure-
ment, reflects variations in the saturation magnetization or crystalline
anisotropy, or the film roughness.

A two-dimensional internal-field image is obtained by setting the
external field to Hfix, where the slope, hF/hH, of the FMRFM signal as
a function of field for the first-order localized mode is maximum
(Fig. 3, inset), and then monitoring the spatial variation in the force
signal. Variations in the internal field will shift the resonance peak by
dH, thus changing the FMRFM force: dF 5 (hF/hH)dH. The field
resolution is approximately DH(Fn/F0) < 1 G, where DH is the spec-
tral linewidth (,50 G) and the signal-to-noise ratio is F0/Fn < 100 for
the line shown in the inset in Fig. 3.

Figure 4a shows internal-field images for the permalloy film for
different values of z. The variation in the internal field dH(x, y) with
lateral position is reproducible and persists for different values of z,
showing that it reflects inhomogeneity of the sputter-deposited film.
As shown in Supplementary Information, the FMRFM images have
higher lateral resolution than simultaneously acquired magnetic force
microscopy images as a consequence of the very different natures of
FMR imaging and magnetic force microscopy: the first measures the
internal fields inside a ferromagnetic material whereas the latter maps
stray field gradients outside the sample.

These data allow us to characterize our lateral resolution. We
determine the maximum resolved wavevector, km, from a Fourier
transform of the images: 75% of the signal energy in the Fourier
transform comes from wavevectors less than km. This quantifies the
real-space resolution, Rres 5 a1/km; we become increasingly unable to
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Figure 2 | Field-position FMRFM imaging of a permalloy dot using localized
modes. FMRFM images of the FMR resonance shift (such as shown in
Fig. 1c) at different lateral positions over the dot (indicated by the thick blue
bar), measured for a series of probe–sample separations. These separations
describe the distance from the centre of the probe tip to the sample surface,
so the bottom of the probe is approximately 350 nm from the surface at the
smallest separation shown. The rightmost four panels compare theoretical
expectations (dotted lines) assuming no modification of FMR modes by the
probe field (equation (1)). Although it is adequate at large separation (weak

probe field), this approach fails upon closer probe approach. The leftmost
three images show comparison with confined-mode predictions (coloured
solid lines) using variationally calculated values, Rloc,n (equation (3)), for the
probe-localized magnetostatic mode. The black solid line shows the
inhomogeneous demagnetizing field of the dot (shifted by appropriate
dynamic and probe fields) corresponding to the first local mode (equation
(5)), demonstrating that the first-order localized mode accurately images the
internal magnetic field of the dot.
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Figure 3 | Field-position FMRFM image of a continuous permalloy film.
Variation in the resonance fields of the n 5 1 and n 5 2 localized modes with
lateral position, for z 5 1.32 mm, reflecting variation in the internal field in a
permalloy film (see text). The inset shows a section through the n 5 1 mode
for a fixed lateral position. By setting the external field to Hfix, such that the
variation in the FMRFM signal with internal field is a maximum, we realize a
high-sensitivity detector of the internal field as a function of x–y position.
Variations in the detected force, dF(x, y), reflect internal field variations
through shifts in the resonance field: dH(x, y) < dF(x, y)(DH/F0), where DH
is the FMR linewidth and F0 is the FMRFM force at resonance. Images
obtained by this method are shown in Fig. 4a and in Supplementary Fig. 5a.
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discern lateral variations in sample properties occurring on length
scales below Rres. Figure 4b shows km values (indicated by the radii of
the dotted circles) determined from Fourier transforms at several
probe–sample separations, and we plot the dependence of the lateral
resolution on probe–sample separation in Fig. 4c. Spatial resolution
is further discussed in Supplementary Information.

The finest experimental resolution (obtained at z 5 1.3 mm) is
200 nm. This is consistent with the size of the mode shown in
Fig. 1b (see also the discussion in Supplementary Information); a
lateral displacement of the tip from a signal source equal to one-third
of the mode radius (,200 nm in the case shown in Fig. 1b) reduces
the signal by 36%, which is large in comparison with the ratio of noise
to signal. Spatial resolution is improved by the fact that the detected
signal is proportional to m2

n(r), which drops off more steeply with r.
The ultimate resolution will be limited by exchange interactions and
can be evaluated (equation (5)). To do so, we ignore the dynamic
dipolar field because it can be reduced by decreasing the film thick-
ness, and evaluate the limit defined by the exchange term
Rloc§a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=jHp(0)jMs

p
, where jHp(0)j is the maximum probe field;

we find that Rloc . 30 nm for permalloy. A more detailed calculation
of the point response function including the dipolar dynamic field
and a complete analysis of the mode characteristics indicates that a
resolution of Rres < 90 nm is achievable in a 40-nm-thick permalloy
film.

The localized FMR mode can also be viewed as a detector of
external magnetic fields with a sensitivity of ,1 G Hz21/2 in a sensor
area of radius ,200 nm, that is, a detected volume of ,5 3 10221 m3.
This field sensitivity can be straightforwardly improved by using a
ferromagnetic film with a narrower FMR linewidth, and the effective
volume can be decreased by reducing the moment of the magnetic
probe and optimizing the ferromagnetic film parameters (Sup-
plementary Information). Our technique provides a readily applic-
able approach to the high-resolution imaging of (possibly buried)
magnetic structures, such as those used in spintronic, sensing and
biomagnetic applications, with spectroscopic precision.

METHODS SUMMARY
A high-coercivity (.2 T) SmCo5 micromagnetic probe, with volume

,1.2 3 1.2 3 1.5mm3 and moment mp 5 1.2 3 1029 e.m.u. oriented antiparallel

to the applied field, creates a well of magnetic field in the film as illustrated in

Fig. 1b. The applied field, which is sufficient to saturate the film, is applied

perpendicular to the film plane (the z direction) as shown in Fig. 1a. We attach

the probe to a silicon cantilever (spring constant, ks < 0.1 N m21), and through

the magnetic dipolar interaction it detects the FMR excitations in the sample.

Details of the FMRFM technique are available in refs 5, 7, 16, 22, 24. Our

experiments were performed on a continuous permalloy film and a permalloy

disk of radius Rdot 5 2.12mm, both t 5 40 nm thick.

The experiments were performed at 10 K, the microwave frequency was

7.475 GHz; we modulated the amplitude of the microwaves at the cantilever fre-

quency to generate a modulated force detectable by the cantilever. The magnetic

moment of the tip was determined from cantilever magnetometry; its dipolar field

can be easily calculated from this moment. The probe field at z 5 1.3mm was

,1.2 kG (Fig. 1b) and decreased monotonically as 1/z3 with increasing z.
The dispersion relation for a thin ferromagnetic film magnetized perpendicular

to the film plane is21,23

v

c
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where Heff 5 H0 2 4pMs 1 Hp is the effective field (we consider only the z com-

ponent of the fields, because other components are small in comparison with Heff)

and f(k) 5 1 2 (1 2 e2kt)/kt. Here we have taken into account the fact that the

field is non-uniform16,21:
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Ð
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where m(r) is an eigenmode solution for the non-uniform field Heff(r).

For small wavevectors (kt= 1), equation (4) can be written

v

cj j< Hef fh iz4pMsaexk2zpMskt ð5Þ

where, for the continuous film, ÆHeffæ 5 H0 2 4pMs 1 ÆHpæ and, for the dot,

ÆHeffæ 5 H0 1 ÆHdæ 1ÆHpæ, where Hd(r) is the non-uniform demagnetizing field

of the dot.
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