

МЕТОДОЛОГИЧЕСКИЕ АСПЕКТЫ СКАНИРУЮЩЕЙ ЗОНДОВОЙ МИКРОСКОПИИ

Сборник докладов XII Международной конференции

Минск, 18-21 октября 2016 г.

МАГНИТНО-РЕЗОНАНСНАЯ СИЛОВАЯ МИКРОСКОПИЯ ФЕРРОМАГНИТНЫХ СТРУКТУР

В. Л. Миронов

Институт физики микроструктур РАН, Нижний Новгород, Россия

Аннотация В докладе представлен один из новых методов диагностики резонансных свойств ферромагнитных структур – магнитно-резонансная силовая микроскопия на основе явления ферромагнитного резонанса. Обсуждаются применения этого метода для анализа спектров и пространственных мод колебаний намагниченности широкого круга планарных ферромагнитных наноструктур.

Ключевые слова: ферромагнитный резонанс; магнитно-резонансная микроскопия; ферромагнитные наноструктуры.

Введение

Магнитно-резонансная силовая микроскопия (MPCM) – одно из новых, быстро развивающихся направлений диагностики магнитных и СВЧ свойств материалов, сочетающее в себе преимущества сканирующей зондовой микроскопии и методов магнитно-резонансной диагностики. В последнее время в этой области достигнуты значительные успехи, связанные, прежде всего, с детектированием резонансов предельно малых объектов – магнитных моментов единичных электронов и атомных ядер [1,2].

Один из первых экспериментов по наблюдению локального ферромагнитного резонанса (ФМР) в образцах железо-иттриевого гранта, расположенного на кантилевере зондового микроскопа, был проведен в 1996 г. [3]. В дальнейшем была реализована классическая схема исследования ФМР образцов в поле зонда магнитно-силового микроскопа (МСМ) [4], которая в настоящее время получила наиболее широкое распространение. Такая схема эксперимента обладает рядом преимуществ. Во-первых, располагая зонд вблизи поверхности исследуемого образца, удается реализовать условия резонанса только в очень ограниченной области образца, обусловленной локальным магнитным полем МСМ зонда. Это позволяет при сканировании исследовать пространственные распределения резонансных свойств образцов. С другой стороны, приподнимая зонд, можно снизить степень влияния его поля на образец и исследовать спектры и собственные моды колебаний намагниченности. Особую роль в МРСМ играет микромагнитное моделирование СВЧ колебаний намагниченности [5]

Магнитно-резонансный микроскоп на основе MCM "Solver HV"

В настоящее время в ИФМ РАН реализуется макет МРСМ на основе зондового микроскопа "Solver HV" (Компания "HT-MДТ"). Данный микроскоп имеет вакуумный объем (остаточное давление до 10^{-5} Topp). Измерительная головка располагается внутри вакуумной камеры и выполнена из немагнитных материалов. Микроскоп имеет открытую архитектуру. Он выполнен в виде отдельной головки, устанавливаемой над образцом. Подвод зонда к образцу осуществляется автоматически с помощью шагового двигателя. Сканирование осуществляется зондом. Площадь сканирования составляет 100×100 мкм. Диапазон перемещений по оси Z составляет ± 2 мкм. Головка устанавливается на основание, оснащенное магнитами постоянного тока. Магнитное поле в плоскости образца составляет 1 кЭ, а в направлении перпендикулярном плоскости образца 500 Э.

СВЧ возбуждение образцов в диапазоне 0.1 – 10 ГГц осуществляется с помощью копланарного микрополоскового волновода. Первые эксперименты показали достаточно высокий уровень сигнала, что позволило уверенно регистрировать спектры ФМР тонкопленочных образцов пермаллоя (NeFe) и железо-иттриевого граната (Y₃Fe₅O₂).

Микромагнитное моделирование ФМР в наноструктурах

Моделирование пространственных распределений намагниченности И ферромагнитного резонанса проводилось на основе численного решения уравнения Ландау-Лифшица-Гильберта для намагниченности образца с использованием стандартного пакета Object Oriented Micromagnetic Framework (OOMMF) [6]. Расчеты проводились для системы из пермаллоя (Ni₈₀Fe₂₀) со следующими параметрами: намагниченность насыщения 8×10^6 A/m, обменная константа 1.3×10^{-11} J/m, параметр диссипации 0.01, кристаллографическая анизотропия не учитывалась. При моделировании колебаний намагниченности первоначально система приводилась в состояние равновесия, после чего к ней прикладывалось переменное магнитное поле и регистрировалась амплитуда установившихся колебаний. Частота возбуждающего СВЧ поля изменялась в диапазоне от 0 до 14 ГГц. Внешнее постоянное магнитное поле отсутствовало. Для анализа модового состава резонансов рассчитывались временные реализации пространственных распределений колебаний компонент намагниченности при накачке на резонансных частотах [7].

Доменные стенки в нанопроволоках

Было проведено микромагнитное моделирование ферромагнитного резонанса в планарной системе, состоящей из нанопроволоки (НП) и однодоменной наночастицы (НЧ), расположенной перпендикулярно оси проволоки. Размеры нанопроволоки и наночастицы составляли 1000 × 100 × 20 нм и 300 × 100 × 20 нм соответственно. Зазор между частицей и проволокой был равен 60 нм. Переменное магнитное поле направлялось вдоль НП.

Рис. 1. (а) Спектр колебаний системы НП-НЧ с поперечной доменной стенкой. (б) Спектр колебаний системы без доменной стенки. (в) Распределение амплитуды колебаний *z*-компоненты намагниченности, связанное с пиком 1 (рис. 1(а)). Границы нанопроволоки и наночастицы показаны пунктирными линиями.

При намагничивании данной системы в однородном магнитном поле, направленном вдоль длинной оси НЧ, и последующем снятия поля проволока релаксировала в состояние

с поперечной доменной стенкой. Спектр вынужденных колебаний намагниченности для этого случая представлен на рис. 1(а). При намагничивании вдоль проволоки доменная стенка уходила, и спектр колебаний изменялся (рис. 1(б)). Анализ спектров и мод колебаний показывает, что интенсивный пик 1 (рис. 1(а)) обусловлен колебаниями, локализованными в области доменной стенки. Соответствующее распределение амплитуды колебаний приведено на рис. 1(в). Пик 2 связан с колебаниями наночастицы.

С практической точки зрения, структуры подобного типа могут применяться в качестве переключаемых элементов в устройствах СВЧ электроники на основе планарных волноводов.

Доменные стенки в структурах CoPt с перпендикулярной анизотропией

Другим интересным объектом являются скирмионно-побные состояния в многослойных пленках CoPt с перпендикулярной анизотропией [8]. Одним из способов создания таких состояний является локальное облучение пленок сфокусированными пучками ионов He [9], которое приводит к уменьшению параметра анизотропии CoPt.

Рис. 2. (а) Схематическое изображение участка пленки CoPt, облученной ионами He. Направление намагниченности облученных областей изменено на противоположное (показано светлыми стрелками). (б) Спектр колебаний намагниченности системы. (в) Распределение амплитуды колебаний z-компоненты намагниченности, связанное с пиком 1 (рис. 2(б)). (г) Распределение амплитуды колебаний z-компоненты намагниченности, связанное с пиком 2 (рис. 2(б)). (д) Распределение амплитуды колебаний z-компоненты намагниченности, намагниченности, связанное с пиком 3 (рис. 2(б)).

На рис. 2 приведены спектр колебаний пленки CoPt с областями круглой формы, облученными ионами Не. Пики 1 и 2 связаны с колебаниям, локализованными внутри облученных областей (рис. 2(в) и 2(г)). Пик 3 обусловлен резонансом пленки как вне, так и внутри облученных областей (рис. 2(д)).

Влияние МРСМ зонда на колебания намагниченности

Важным фактором МРСМ эксперимента является влияние поля МСМ зонда на резонансные свойства образцов. Для учета этого фактора нами проводилось моделирование ФМР полоски пермаллоя размером 5 × 10 мкм в условиях воздействия поля зонда в виде однородно-намагниченной сферы. На рис. 3 представлен спектр колебаний намагниченности и пространственное распределение моды колебаний, соответствующей пику 2, связанному с возмущением пленки полем зонда.

В настоящее время проводятся исследования эффектов влияния зонда в зависимости от параметров эксперимента и особенностей ферромагнитного резонанса в МРСМ зондах.

Заключение

Таким образом, в работе рассмотрены возможности применения метода магнитнорезонансной микроскопии по отношению к исследованиям ферромагнитных наноструктур. Приведены результаты микромагнитного моделирования вынужденных колебаний намагниченности в планарных структурах на основе пермаллоя. Рассмотрены резонансные колебания намагниченности доменной стенки в нанопроволоке. Показана возможность перестройки спектра при перемагничивании нанопроволоки. Рассмотрены особенности спектра и модового состава колебаний намагниченности локально модифицированных пленок CoPt с перпендикулярной анизотропией. Рассмотрено влияние зонда MCM на ферромагнитный резонанс исследуемых образцов.

Автор выражает благодарность Р.В.Гореву, Е.В.Скороходову, М.В.Сапожникову и А.А.Фраерману за полезные обсуждения. Работа выполнена при поддержке Российского научного фонда (проект 16-02-10254).

Список использованных источников

1. Rugar, D. Single spin detection by magnetic resonance force microscopy / D.Rugar, R. Budakian, H. J. Mamin, B. W. Chui // Nature. – 2004. - Vol. 403, - P. 329.

2. Degen, C.L. Nanoscale magnetic resonance imaging / C.L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, D. Rugar, // Proc. Nat. Acad. Sci. USA. – 2009. – Vol. 106, - P. 1313.

3. Zang, Z. Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy / Z.Zang, P.C.Hammel, P.E.Wigen // Appl. Phys. Lett. – 1996. – Vol. 68, - P. 2005.

4. Klein, O. Ferromagnetic resonance force spectroscopy of individual submicron-size samples / O. Klein, G. de Loubens, V. V. Naletov, F. Boust, T. Guillet, H. Hurdequint, A. Leksikov, A. N. Slavin, V. S. Tiberkevich, N. Vukadinovic // Phys. Rev. B. – 2008. - Vol. 78, - P. 144410.

5. Aranda, G.R. Ferromagnetic resonance micromagnetic studies in patterned permalloy thin films and stripes / G. R. Aranda, G. N. Kakazei, J. González, K. Y. Guslienko // J. Appl. Phys. – 2014. – Vol. 116, - P. 093908.

6. Donahue M.J. "OOMMF User's Guide" / M.J. Donahue and D.G. Porter // Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, <u>http://math.nist.gov/oommf</u>.

7. Горев, Р.В. Моделирование ферромагнитного резонанса в микрополоске прямоугольной формы /Р.В. Горев, В.Л. Миронов, Е.В. Скороходов // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2016. - № 3. - С. 37.

8. A.A. Fraerman, O.L.Ermolaeva, E.V.Skorohodov, N.S.Gusev, V.L.Mironov, S.N.Vdovichev, E.S.Demidov - Skyrmion states in multilayer exchange coupled ferromagnetic nanostructures with distinct anisotropy directions // Journal of Magnetism and Magnetic Materials. – 2015. – Vol. 393, - P. 452.

9. Devolder, T. Magnetic properties of He+-irradiated Pt/Co/Pt ultrathin films / T. Devolder, J. Ferré, C. Chappert, H. Bernas, J.-P. Jamet, and V. Mathet // Physical Review B. – 2001. – Vol. 64, - P. 064415.